INTRODUCTION

- **Background**
 - DBSCAN algorithm is one of the most widely used clustering algorithms.
 - The benefit is to capture arbitrary shape of clusters.
 - Key idea is to find dense region and to expand the regions in order to form clusters.
 - However, it is unlikely that a single machine support a typical size of big data.
 - Distributed processing has been adopted to increase the usability of DBSCAN.

- **Motivation**
 - Common procedures of existing parallel DBSCAN algorithms.

OUR METHODOLOGY

- **Key Idea**
 - Random Partitioning
 - It naturally solves the three limitations of region-based partitioning.

EVALUATION METHODOLOGY

- **Experimental Setting**
 - **Algorithms**
 - ESP-DBSCAN: even-split w. ε-approximation
 - CBP-DBSCAN: cost-based w. ε-approximation
 - RBP-DBSCAN: reduced-boundary w. ε-approximation
 - NG-DBSCAN: graph-based
 - RP-DBSCAN: proposed algorithm
 - **Real Data Sets**
 - GeoLife: 24,876,978 points, 3 dimensions
 - Cosmo50: 315,086,245 points, 3 dimensions
 - OpenStreetMap: 2,770,238,904 points, 2 dimensions
 - TeraClickLog: 4,373,472,329 points, 13 dimensions

EVALUATION RESULT

- **Efficiency Result**
 - **Efficiency Detail: Load Imbalance and Total Number of Points**

ACCURACY RESULT

- **Table 4: Accuracy of RP-DBSCAN in the Rand index**

SIZE OF SUMMARY

- The size was only ranging from 0.04% to 8.20% of the data set.

REFERENCES

- Hwanjun Song, Jae-Gil Lee

RP-DBSCAN: A Superfast Parallel DBSCAN Algorithm Based on Random Partitioning

Hwanjun Song†, Jae-Gil Lee‡*

† Graduate school of Knowledge Service Engineering, KAIST
‡ Corresponding Author

Algorithm

- RP-DBSCAN: proposed algorithm

Datasets

- GeoLife, Cosmo50, OpenStreetMap, TeraClickLog

Performance

- Efficiency
 - Load Imbalance
 - Total Number of Points

Results

- Accuracy
 - Rand index

Summary

- Size of the two-level cell dictionary.