INTRODUCTION

- **Motivation**
 - K-Medoids algorithm is one of the best-known clustering algorithm.
 - It is not widely used for big data analysis because of its high computational complexity.
 - Many studies have attempted to solve the problem.
 - However, all such studies have improved efficiency in the expense of accuracy.
 - We propose PAMAE, that achieves both high accuracy and high efficiency.

OUR METHODOLOGY

- **Key Idea (PAMAE)**
 - Global search and entire data are the two main ingredients for high accuracy; but using them simultaneously harms efficiency.
 - To apply these two components individually though two phases:
 - **Phase I** is intended to quickly retrieve a high-quality set of seeds by sampling.
 - **Phase II** is intended to further reduce the possible errors induced by sampling.

PROBLEMS OF EXISTING SOLUTIONS TO IMPROVE THE EFFICIENCY

- **Overall Procedure of PAMAE**
 - Phase I: Parallel Seeding
 - **Step (1):** Creates k random samples whose size is n.
 - **Step (2):** Runs a global search k-Medoids algorithm against each sample.
 - **Step (3):** Selects the best set of seeds among k sets of Medoids.
 - Phase II: Parallel Refinement
 - **Step (4):** Parition the entire data set just like the assignment step of the k-Medoids algorithm using the best seeds of Phase I.
 - **Step (5):** Update the Medoids of each cluster by choosing the most central object.
 - **Step (6):** Partitions the entire data set into clusters if needed.

EVALUATION METHODOLOGY

- **Evaluation Results**
 - **Accuracy Result**
 - absolute error
 - **Relative Error Evaluation**
 - **Evaluation Results**

EVALUATION RESULTS

- **Real-World Data Sets**
 - Data Set | # Object | # Time | Size | Type | Central
 - Cosmos2 | 2,494,293 | 36 | 7,998 | m | O
 - Covertype | 315,586,245 | 10 | 39,858 | True | O
 - TeraClickLog | 6,734,472,210 | 10 | 3,995,086 | True | O

- **Cornerstone of data is measured by Pearson's correlation coefficient of attributes.
 - Evaluation results of Cosmos2 are removed in the present due to lack of space.

- **Relative error evaluation**
 - **Efficiency Result**
 - **Scalability Test on Spark**
 - **Parallel Spark achieved near-linear scalability**
 - **Total elapsed time increased by 5.1 times when the data size increased from 30GB to 300GB by 10 times**

CONCLUSION

- We proposed a novel parallel k-Medoids algorithm, which we call PAMAE.
- PAMAE consists of two phases: parallel seeding and parallel refinement.
- Our theoretical proof and experiment show that PAMAE achieved the excellent trade-off between accuracy and efficiency.
- We believe that our work has significantly raised the usability of the k-Medoids algorithm in the era of big data.

PAMAE: Parallel k-Medoids Clustering with High Accuracy and Efficiency
Hwanjun Song, Jae-Gil Lee* and Wook-Shin Han

Korea Advanced Institute of Science and Technology (KAIST) and Pohang University of Science and Technology (POSTECH)