INTRODUCTION

- **Motivation**
 - Standard Supervised Learning Setting
 - Assume: training data $= \{(x_i, y_i)\}_{i=1}^{N}$
 - However, in practical setting, $y_i \neq \hat{y}_i$
 - High cost and time consuming
 - Expert knowledge
 - Unattainable at scale
 - Learning with Noisy Label
 - Suffered from poor generalization on test data

SELFIE (SELectively refurbItSh unClean samples)

- Hybrid approach of loss correction and sample selection
- Introduce the concept of *refurbishable samples* \mathcal{R} that can be corrected with high precision
- Correct the losses of *refurbishable samples* \mathcal{R} and combine them with the losses of "clean samples" \mathcal{C} to propagate backward

Update Equation

- Let $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{N}$, $\mathcal{M} = \{(x_i, \hat{y}_i)\}_{i=1}^{N}$; noisy label
- Standard update equation
 $$\theta_{t+1} = \theta_t - \alpha\frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i)$$
- Modified update equation
 $$\theta_{t+1} = \theta_t - \alpha\frac{1}{N} \sum_{i=1}^{N} \left(L(x_i, y_i) + \mathcal{R}(x_i) \right)$$

Select Clean samples \mathcal{C} and refurbishable samples \mathcal{R}

- Clean samples \mathcal{C} from the mini-batch \mathcal{M}
 - We adopt the widely used loss-based selection
 - $\mathcal{C} = \{(100 - \text{noise rate})\% \text{ of low-loss samples in } \mathcal{M}\}$
- Refurbishable samples \mathcal{R} from the mini-batch \mathcal{M}
 - Before the network fully fits the noisy labels, the label predictions of mislabeled samples \mathcal{R} changes inconsistently
 - $R_{\epsilon}(x_i) \neq \hat{y}_i$; noisy labeling
 - $R_{\epsilon}(x_i) = \epsilon\%$ predicted label for previous ϵ times

Advantage of SELFIE

- Minimize the false correction during the training
- Only the samples in \mathcal{R} are connected with high precision
- Explode all training samples at the end of training
- As the training progresses, more samples become refurbishable

Noise Type

- **Syntethic Noise**
 - Injected the two widely used synthetic noise \mathcal{E}_p
 - Pair noise
 - Symmetric noise
 - CIFAR-10, CIFAR-100, and Tiny-ImageNet were used
 - Robust Deep Learning
 - Built ANIMAL-10N dataset with real-world noise
 - Caved 5 pairs of confusing animals (total #: 60,000 images)
 - (cat, lynx), (jaguar, cheetah), (hamster, guinea pig), ...

OUR METHODOLOGY

Sample Selection (Recent Direction)

- Select clean *(easy)* samples \mathcal{C} for parameter updates (SGD step)
 - E.g., Select $\{(100 - \text{noise rate})\% \text{ of low-loss samples as clean}\}$
 - Achieve a much better performance on heavily noisy data
- However, use only partial exploration of the entire training data
- Ignore useful hard samples classified as unclean

EVALUATION

Performance on Synthetic Noise

- Trained DenseNet ($L=25$, $k=12$) and VGG-19 with varying noise rates
 - Absolute error reduction by up to 6.9% (DenseNet) and 6.5% (Symmetric)

Performance on Robust Noise

- Trained DenseNet ($L=25$, $k=12$) and VGG-19
 - Absolute error reduction by up to 8.7% (DenseNet) and 2.4% (VGG)

SELFIE: Refurbishing Unclean Samples for Robust Deep Learning

Hwanjun Song†, Minseok Kim†, Jae-Gil Lee‡*

† Graduate school of Knowledge Service Engineering, KAIST
‡ Corresponding Author